Search results for "free boundary problems"
showing 5 items of 5 documents
Existence of viscosity solutions to two-phase problems for fully nonlinear equations with distributed sources
2018
In this paper we construct a viscosity solution of a two-phase free boundary problem for a class of fully nonlinear equation with distributed sources, via an adaptation of the Perron method. Our results extend those in [Caffarelli, 1988], [Wang, 2003] for the homogeneous case, and of [De Silva, Ferrari, Salsa, 2015] for divergence form operators with right hand side.
A free boundary problem stemmed from combustion theory. Part II: Stability, instability and bifurcation results
2002
AbstractWe deal with a free boundary problem, depending on a real parameter λ, in a infinite strip in R2, providing stability, instability and bifurcation.
Thin obstacle problem : Estimates of the distance to the exact solution
2018
We consider elliptic variational inequalities generated by obstacle type problems with thin obstacles. For this class of problems, we deduce estimates of the distance (measured in terms of the natural energy norm) between the exact solution and any function that satisfies the boundary condition and is admissible with respect to the obstacle condition (i.e., they are valid for any approximation regardless of the method by which it was found). Computation of the estimates does not require knowledge of the exact solution and uses only the problem data and an approximation. The estimates provide guaranteed upper bounds of the error (error majorants) and vanish if and only if the approximation c…
A two-phase problem with Robin conditions on the free boundary
2020
We study for the first time a two-phase free boundary problem in which the solution satisfies a Robin boundary condition. We consider the case in which the solution is continuous across the free boundary and we prove an existence and a regularity result for minimizers of the associated variational problem. Finally, in the appendix, we give an example of a class of Steiner symmetric minimizers. peerReviewed
Drops moving in flow with chernical reaction
1994
We propose a free boundary model described by coupled Navier-Stokes and chemical reaction equations with discontinuous coefRcients to simulate the chemical re- ¿ctions in viscous drops moving in a viscous incompressible ûuid. Approximation of the solution by a special ñnite element method (FEM) with a method of mapping is discussed. Several numerical resulùs åre presented.